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We propose to simulate a Dirac field near an event horizon using ultracold atoms in an optical
lattice. Such a quantum simulator allows for the observation of the celebrated Unruh effect. Our
proposal involves three stages: (1) preparation of the ground state of a massless 2D Dirac field
in Minkowski spacetime; (2) quench of the optical lattice setup to simulate how an accelerated
observer would view that state; (3) measurement of the local quantum fluctuation spectra by one-
particle excitation spectroscopy in order to simulate a De Witt detector. According to Unruh’s
prediction, fluctuations measured in such a way must be thermal. Moreover, following Takagi’s
inversion theorem, they will obey the Bose-FEinstein distribution, which will smoothly transform
into the Fermi-Dirac as one of the dimensions of the lattice is reduced.
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It has been thirty years since the discovery of the Unruh effect. It has played a crucial role in
our understanding that the particle content of a field theory is observer dependent. This effect
is important in its own right and as a way to understand the phenomenon of particle emission
from black holes and cosmological horizons. Here, we review the Unruh effect with particular
emphasis to its applications. We also comment on a number of recent developments and discuss
some controversies. Effort is also made to clarify what seems to be common misconceptions.



Unruh effect

m An accelerated observer through the flat Minkowski
spacetime vacuum will observe a thermal bath, a:
constant acceleration ,

kBTU = %

m Similar to Hawking radiation

m Event Horizon (Black wall vs Schwarzschild radius)
prevents communication between different region of
space time, which plays a role of heat bath

s Thermal effect without underlying stochasticity
— Thermal mixed state from pure quantum state



Hawking radiation

Black Hole of mass M

Vacuum fluctuation, particle-antiparticle pair
creation/annihilation, near Schwarzschild radius

one of pair escape from BH, and the other fall into BH

Emitted particle spectrum turns out to be blackbody radiation with
temperature el

~ 8tkGM
Blackhole lose mass (energy conservation), eventually evaporate,
information paradox

Event horizon

Gravity-warped
space-time

Hawking
—\_radiation

Virtual photon pair
splits and becomes real.

[Wikipedia]
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Rindler spacetime

Flat Minkowski spacetime

Consider an observer with constant acceleration a=1 in x-axis.
Observer is at rest at t=0 and x=1

Natural coordinate for the observer is Rindler coordinate (co-
moving coordinate) (t,x) -> (¢, n) {tzgsmhn
x = &coshn

The observer’s trajectory is &=1, and all n
The Minkowski metric in Rindler coordinate ds? = @nQ + d&? + dy? + dz?

spacetime is separate into two parts,
left and right Rindler wedges,
doesn’t communicate each other AN

From observer’s point of view (¢=1), N
light moves at ¢<1 is slower than 1.

At =0, light stops (Black wall). / p




Thermalization theorem

m Spacetime with time-like Killing vector (metric is invariant along
with the vector) has well defined energy

m Thermalization theorem (Tolman-Eherenfest):

For any thermal equilibrium field, local temperature times time-
like Killing vector is constant: T 1/2

= const
c.f. redshift frequency 900

v(P') = \/900 /900 ’)

s Vacuum of Massless Dirac fleld (Fermi sea)

0n) = H by

w,iVI <0

m Vacuum of accelerated observable, Hamiltonian Hg

0r) = 11 i1

R
Wy <0



Minkowski vacuum is not vacuum (either eigenstate) of Hg

For the observer, field in left Rindler Wedge (LRW) is not causal,
state of LRW dof is traced out (loss of information)

pr = Trr, |Oar) (Ons]

Density matrix can always formally written as a thermal state using
entanglement Hamiltonian Hx  pr = exp(—HE)

H: and Hy commute according to boost invariance of Minkowski
vacuum 0=pr = —%[pR,HR]

It can be explicitly proved H; is proportional to Hg

_ Hr ha
pR—eXp( kBTU> kply = %

Minkowski vacuum turns out stationary to an accelerated observer



Unruh effect

Two different mode expansions of the same fermion field with
definite wavefunctions

Bogoliubov transformation  d}, =) Ugub}
Occupation of Rindler mode on the Minkowski vacuum (IR cutoff by
radius €)

nar= [ Ould} i) 014y 0u) = 3 nlo

w,iVI<O

_ 1 _ h
nq’r_exp(hwR/kBTU( ) +1 kBTU( ) — 2

De Witt detector (minimally coupled to fermion fleld atr), w hose
absorption/emission is written by Wightman function

G(t) = (Om| ¢y (2) ca(0)(0) [Or)
X(t) : trajectory of the observer, c, is the annihilation operator at x

detector response function G(w) , Fourier transformation of G(t)



Unruh effect (contd.)

Minkowski operator b, in terms of coordinate space operator c,
(M, : wave function = plane wave)

Rindler operator d, in terms of coordinate space operator c,
(Rex = wave functions )
d]; = ZqucL

c.f. Bogoliubov transformation

k

Detector response function
Guy(w) = [ e Our] e (s, 0) 021

1 kBTU(I') =

— — YR / J ! =
= S0~ R 3 Ot = R o 1)) 4 1

4,9’ wM <0

_h_
21X

is the Fermi-Dirac thermal distribution (in 1+1 dim and 3+1 dim)
is Bose-Eistein distribution (in 2+1 dim) for Fermion, and opposite for

Boson (Takagi’s inverse theorem)

1 1

W) = o /T =1’




Dirac fermion in Rindler Lattice

Minkowski Dirac Hamiltonian
i00t) = H1p = —ivoy? 01 i0ph = —i (0p0y + Dyoy)
curved spacetime Hamiltonian (w, : spin connection)

1
Oup — Dy = <8 + 4% %b> (0 Yab E‘%[%,%]-

: : 1 1, .
WO = —iye ( 705 + 47 Wi Yap + 4’thtb%b> (G

Rindler coordinate ds? = —z2dt? + dz? + dy?
spin connection (others are zero) w9 = z/|z|
Dirac equation and Hamiltonian density

) 1z
10 = —1 ((|ay|8x ; |37|) or + |2|0, o'y) 0 Hr = —1 ((|9[:|(9¢C + 5@) or + |x|8yoy>

Hpr = .
Second quantized Hamiltonian &, - [ syt R = VIpyT.
x=0 is the boundary (any boundary condition is allowed at |x]|=0)
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Eigenstate of Rindler Hamiltonian in 1+1 dim

1-particle Hamiltonian (density) H R(1D) — \/Ep\/f
variable transformation u = log(x). ( boundary x=0is u— - =)
Hrapy = —1(0y +1/2)

eigenvalue equation
— i (20, +1/2) () = =i (9 +1/2) () = wip(u)

eigen functions ( plane waves inu =log(x) ) °r —
Y(u) = A exp |:(2w — %) u] _ A piw—1/2 1 ;::',H\\ i “e T
orthonormal s e
fooo da exp ((—iw — 1/2)u) exp ((iw’ . 1/2)u) _ 77: :“”’ *.\'/-’*-»...‘- A
J2%, duexp(—iwu) exp(is'n) = 5w — o).

Spinor structure

— i (20, +1/2) 0y @;) = w (22) (3;8:3) = A (i11> i —1/2gm it
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Lattice Discretization

1+1 dim HR(lD) _ \/Ep\/%

Xn, =md, d: lattice spacing, m=-(L-1) / 2, ..., (L-1)/2, even L

symmetric derivative for P = —10,

(pw)m = —1 (wm—l—l — wm—l) /(2d)

1 particle Hamiltonian  Hp(1py = /zpy/z

7
Ry m+1 = ) \/m(m +1)

for 2+1 dim

Hy ==ty ((m+3) T,
m,n

+metEm=m) t

m,n+1) cm,n + H.c.,
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Simulating Unruh effect

m Detector response function G(w), Fourier transformation of

G(t) = (Oar] el ) (1) e (0) 10a)

m Measure overlap between the states of one-hole excitation at t=0
and t

m [n Right Rindler coordinate, observer’s trajectory is x(0) = x(t) =
X, (frame independence, equivalence principle)

m Strategy : quench from Minkowski Hamiltonian to Rindler
spacetime

1. Prepare Mikowski vacuum

2. Quench : Switch Hamiltonian from Minkowski H,, to Rindler Hg
quench introduces event horizon, disconnecting the L/R Wedges

3.  Measure G(t) in Rindler frame at x=x,



Numerical simulation

2+1 dim and 1+1 dim
space size Lx, Ly

Hy =—Y tg (ei%(m_n)cin—l—l,n

time step t0 for Minkowski . )

+etzimTn Cln,n—i-l cmn +H.c.
time step t0’ for Rindler L
chose t0’ =210/ Lx s s D

Lattice spacing d = t0

expectation () - = (w/Tl(x))H, T(z) = ——

1

€0(w/6) =€ T

£ =2x/L,

e ei%m_n)Cij) Cmn + Hee.,
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Lx = 500, 1+1 dim
m x=md (smaller x is hotter temperature)
lw / ty | > 11s time-step discretization
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m 2+1dimLlx =Ly =100
m Bose Einstein distribution
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Discretization error

m 1+1 dimension (Fermi-Dirac)

m 2+1 dim

§G(w/¢)

(Bose-Einstein)
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Discussions and Prospects

Authors proposed optical lattice experiment

Apply this in digital quantum computation?
Number of Qbits too demanding ?

Unruh effect for interacting theory such as Schwinger model?
(radiation for photon and electron ?)

E(x)

O» o -
Pure quantum state, namely Minkowski vacuum, turns into thermal

mixed state preparation, which is exponentially large operation
otherwise.

Minkowski vacuum could be prepared via adiabatic deformation from
solvable Hamiltonian (Gumaro, Yuuta et al are now trying ultra-
efficient preparation)

Could we engineer different coordinate system so that the
temperature is constant everywhere ?
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